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The moment generating function (M, (t)) of the random variable x as a function of the variable ¢ is...

M,(t) =E {em] (1)

Note that e!® can be approximated around zero using a Taylor Series Expansion. When x changes from zero to a
non-zero value the approximate value of Equation (1) at the new value of x via a Taylor Series Expansion is...
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To calculate the first moment of the distribution (i.e. M1, which is the expected value of x) we take the first
derivative of Equation (2) with respect to t and evaluate it at t = 0 because...

M1 = lim M=)
t—0 Ot

= lim {JEM +tE[x2} + ;tzE[x?’] 4 (nll)!t”—lE[x"H
- EH (3)

To calculate the second moment of the distribution (i.e. M2, which is the expected value of the square of x) we
take the second derivative of Equation (2) with respect to t and evaluate it at t = 0 because...
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And so on...

The Normal Distribution

The normal distribution is a distribution of continuous random variables. If the random variable x is continuous
the moment generating function of the random variable x where f(x) is the probability density function can be
defined as...
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The equation for the probability density function of the normal distribution with mean m and variance v is...
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If we combine Equations (5) and (6) from above we can write the equation for the moment generating function of
the normal distribution as...
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To solve Equation (7) we will first define a new random variable z to be the normalized random variable x. The
equation for the random variable z is...
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The random variable z as a function of the new random variable z, which was defined in Equation (8) above, is...
r=m+zv 9)
The derivative of Equation (9) with respect to the random variable z is...
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To solve Equation (7) we will next replace the variable x with the variable z as defined in Equations (8), (9) and
(10) above. Equation (7) rewritten to be a function of the variable z is...

ox

—14
0z i

Mo (t) = / tmtav) L o=42°
2mv

o
1
= [ et vl
T 1 1.2
= | —— 2T TRVt mt g, (11)
Var

Noting that after completing the square...
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We can use Equation (12) to rewrite Equation
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11), which becomes...
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The first derivative of Equation (13) with respect to the variable ¢ is...
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The first moment of the distribution will be the limit of Equation (14) as t goes to zero
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The second derivative of Equation (13) with respect to the variable ¢ is...
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The second moment of the distribution will be the limit of Equation (16) as t goes to zero
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The Binomial Distribution

The binomial distribution is a distribution of discrete random variables. If the random variable k, which is the
number of successes out of n trials, is discrete then the moment generating function of the random variable k& where
P(k) is the probability mass function can be defined as...
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The equation for the probability mass function of the binomial distribution with the probability of success equal to
p and the probability of failure equal to 1 — p is...

P) = e P =0 (19)

If we combine Equations (18) and (19) from above we can write the equation for the moment generating function
of the binomial distribution as...

- n! n—
My (t) = kz m?k (1—p)nre®
=0

- n! n—
= Z m (Pet)k (1-p) g (20)
k=0 " ’
Pascal’s rule says that...
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If we define a = pe' and b =1 — p then Equation (20) becomes...
My(t) = (pe' +1—p)" (22)
The first derivative of Equation (22) with respect to the variable ¢ is...

6 My (t)

5 n(pe! +1—p)"pe! (23)

The first moment of the distribution will be the limit of Equation (23) as t goes to zero
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The second derivative of Equation (23) with respect to the variable ¢ is...
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The second moment of the distribution will be the limit of Equation (23) as t goes to zero
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