
The Moment Generating Function

Gary Schurman, MBE, CFA

October, 2011

The moment generating function (Mx(t)) of the random variable x as a function of the variable t is...

Mx(t) = E
[
etx
]

(1)

Note that etx can be approximated around zero using a Taylor Series Expansion. When x changes from zero to a
non-zero value the approximate value of Equation (1) at the new value of x via a Taylor Series Expansion is...
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To calculate the first moment of the distribution (i.e. M1, which is the expected value of x) we take the first
derivative of Equation (2) with respect to t and evaluate it at t = 0 because...
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To calculate the second moment of the distribution (i.e. M2, which is the expected value of the square of x) we
take the second derivative of Equation (2) with respect to t and evaluate it at t = 0 because...
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And so on...

The Normal Distribution

The normal distribution is a distribution of continuous random variables. If the random variable x is continuous
the moment generating function of the random variable x where f(x) is the probability density function can be
defined as...
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The equation for the probability density function of the normal distribution with mean m and variance v is...

f(x) =
1√
2πv

e−
1
2v (x−m)2 (6)

If we combine Equations (5) and (6) from above we can write the equation for the moment generating function of
the normal distribution as...
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To solve Equation (7) we will first define a new random variable z to be the normalized random variable x. The
equation for the random variable z is...

z =
x−m√

v
(8)

The random variable x as a function of the new random variable z, which was defined in Equation (8) above, is...

x = m+ z
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The derivative of Equation (9) with respect to the random variable z is...
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To solve Equation (7) we will next replace the variable x with the variable z as defined in Equations (8), (9) and
(10) above. Equation (7) rewritten to be a function of the variable z is...
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Noting that after completing the square...
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We can use Equation (12) to rewrite Equation (11), which becomes...
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The first derivative of Equation (13) with respect to the variable t is...
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(14)

The first moment of the distribution will be the limit of Equation (14) as t goes to zero
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The second derivative of Equation (13) with respect to the variable t is...
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The second moment of the distribution will be the limit of Equation (16) as t goes to zero
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The Binomial Distribution

The binomial distribution is a distribution of discrete random variables. If the random variable k, which is the
number of successes out of n trials, is discrete then the moment generating function of the random variable k where
P (k) is the probability mass function can be defined as...

Mk(t) =

n∑
k=0

etkP (k) (18)

The equation for the probability mass function of the binomial distribution with the probability of success equal to
p and the probability of failure equal to 1− p is...

P (k) =
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If we combine Equations (18) and (19) from above we can write the equation for the moment generating function
of the binomial distribution as...
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Pascal’s rule says that...
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If we define a = pet and b = 1− p then Equation (20) becomes...

Mk(t) = (pet + 1− p)n (22)

The first derivative of Equation (22) with respect to the variable t is...
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The first moment of the distribution will be the limit of Equation (23) as t goes to zero
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The second derivative of Equation (23) with respect to the variable t is...
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The second moment of the distribution will be the limit of Equation (23) as t goes to zero
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